Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen.

Identifieur interne : 003644 ( Main/Exploration ); précédent : 003643; suivant : 003645

Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen.

Auteurs : Bahtijor Rasulov [Estonie] ; Katja Hüve ; Mikk V Lbe ; Agu Laisk ; Ulo Niinemets

Source :

RBID : pubmed:19587097

Descripteurs français

English descriptors

Abstract

Leaf isoprene emission scales positively with light intensity, is inhibited by high carbon dioxide (CO(2)) concentrations, and may be enhanced or inhibited by low oxygen (O(2)) concentrations, but the mechanisms of environmental regulation of isoprene emission are still not fully understood. Emission controls by isoprene synthase, availability of carbon intermediates, or energetic cofactors have been suggested previously. In this study, we asked whether the short-term (tens of minutes) environmental control of isoprene synthesis results from alterations in the immediate isoprene precursor dimethylallyldiphosphate (DMADP) pool size, and to what extent DMADP concentrations are affected by the supply of carbon and energetic metabolites. A novel in vivo method based on postillumination isoprene release was employed to measure the pool size of DMADP simultaneously with the rates of isoprene emission and net assimilation at different light intensities and CO(2) and O(2) concentrations. Both net assimilation and isoprene emission rates increased hyperbolically with light intensity. The photosynthetic response to CO(2) concentration was also hyperbolic, while the CO(2) response curve of isoprene emission exhibited a maximum at close to CO(2) compensation point. Low O(2) positively affected both net assimilation and isoprene emission. In all cases, the variation in isoprene emission was matched with changes in DMADP pool size. The results of these experiments suggest that DMADP pool size controls the response of isoprene emission to light intensity and to CO(2) and O(2) concentrations and that the pool size is determined by the level of energetic metabolites generated in photosynthesis.

DOI: 10.1104/pp.109.141978
PubMed: 19587097
PubMed Central: PMC2736009


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, University of Tartu, 51010 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Department of Plant Physiology, University of Tartu, 51010 Tartu</wicri:regionArea>
<wicri:noRegion>51010 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
</author>
<author>
<name sortKey="V Lbe, Mikk" sort="V Lbe, Mikk" uniqKey="V Lbe M" first="Mikk" last="V Lbe">Mikk V Lbe</name>
</author>
<author>
<name sortKey="Laisk, Agu" sort="Laisk, Agu" uniqKey="Laisk A" first="Agu" last="Laisk">Agu Laisk</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19587097</idno>
<idno type="pmid">19587097</idno>
<idno type="doi">10.1104/pp.109.141978</idno>
<idno type="pmc">PMC2736009</idno>
<idno type="wicri:Area/Main/Corpus">003515</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003515</idno>
<idno type="wicri:Area/Main/Curation">003515</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003515</idno>
<idno type="wicri:Area/Main/Exploration">003515</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, University of Tartu, 51010 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Department of Plant Physiology, University of Tartu, 51010 Tartu</wicri:regionArea>
<wicri:noRegion>51010 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
</author>
<author>
<name sortKey="V Lbe, Mikk" sort="V Lbe, Mikk" uniqKey="V Lbe M" first="Mikk" last="V Lbe">Mikk V Lbe</name>
</author>
<author>
<name sortKey="Laisk, Agu" sort="Laisk, Agu" uniqKey="Laisk A" first="Agu" last="Laisk">Agu Laisk</name>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon Dioxide (pharmacology)</term>
<term>Light (MeSH)</term>
<term>Oxygen (pharmacology)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Oxygène (pharmacologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Oxygène</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Lumière</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leaf isoprene emission scales positively with light intensity, is inhibited by high carbon dioxide (CO(2)) concentrations, and may be enhanced or inhibited by low oxygen (O(2)) concentrations, but the mechanisms of environmental regulation of isoprene emission are still not fully understood. Emission controls by isoprene synthase, availability of carbon intermediates, or energetic cofactors have been suggested previously. In this study, we asked whether the short-term (tens of minutes) environmental control of isoprene synthesis results from alterations in the immediate isoprene precursor dimethylallyldiphosphate (DMADP) pool size, and to what extent DMADP concentrations are affected by the supply of carbon and energetic metabolites. A novel in vivo method based on postillumination isoprene release was employed to measure the pool size of DMADP simultaneously with the rates of isoprene emission and net assimilation at different light intensities and CO(2) and O(2) concentrations. Both net assimilation and isoprene emission rates increased hyperbolically with light intensity. The photosynthetic response to CO(2) concentration was also hyperbolic, while the CO(2) response curve of isoprene emission exhibited a maximum at close to CO(2) compensation point. Low O(2) positively affected both net assimilation and isoprene emission. In all cases, the variation in isoprene emission was matched with changes in DMADP pool size. The results of these experiments suggest that DMADP pool size controls the response of isoprene emission to light intensity and to CO(2) and O(2) concentrations and that the pool size is determined by the level of energetic metabolites generated in photosynthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19587097</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>11</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>151</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>448-60</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.109.141978</ELocationID>
<Abstract>
<AbstractText>Leaf isoprene emission scales positively with light intensity, is inhibited by high carbon dioxide (CO(2)) concentrations, and may be enhanced or inhibited by low oxygen (O(2)) concentrations, but the mechanisms of environmental regulation of isoprene emission are still not fully understood. Emission controls by isoprene synthase, availability of carbon intermediates, or energetic cofactors have been suggested previously. In this study, we asked whether the short-term (tens of minutes) environmental control of isoprene synthesis results from alterations in the immediate isoprene precursor dimethylallyldiphosphate (DMADP) pool size, and to what extent DMADP concentrations are affected by the supply of carbon and energetic metabolites. A novel in vivo method based on postillumination isoprene release was employed to measure the pool size of DMADP simultaneously with the rates of isoprene emission and net assimilation at different light intensities and CO(2) and O(2) concentrations. Both net assimilation and isoprene emission rates increased hyperbolically with light intensity. The photosynthetic response to CO(2) concentration was also hyperbolic, while the CO(2) response curve of isoprene emission exhibited a maximum at close to CO(2) compensation point. Low O(2) positively affected both net assimilation and isoprene emission. In all cases, the variation in isoprene emission was matched with changes in DMADP pool size. The results of these experiments suggest that DMADP pool size controls the response of isoprene emission to light intensity and to CO(2) and O(2) concentrations and that the pool size is determined by the level of energetic metabolites generated in photosynthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rasulov</LastName>
<ForeName>Bahtijor</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, University of Tartu, 51010 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hüve</LastName>
<ForeName>Katja</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Välbe</LastName>
<ForeName>Mikk</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laisk</LastName>
<ForeName>Agu</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ulo</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="Y">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
<ArticleId IdType="pii">pp.109.141978</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.141978</ArticleId>
<ArticleId IdType="pmc">PMC2736009</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 1999 Sep;11(9):1609-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10488230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):767-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Nov;5(11):477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11077256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Feb;6(2):78-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11173292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):993-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):190-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jul;129(3):1276-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Sep;112(1):171-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Feb;101(2):435-440</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Oct;106(2):689-695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Oct;215(6):894-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12355149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 16;421(6920):256-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Nov;17(11):705-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jul;16(7):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Apr;16(4):441-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jan-Feb;16(1_2):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:185-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Feb;137(2):700-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Apr;46(4):629-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Apr 25;579(11):2514-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15848197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):474-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16461390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Aug;60(2):230-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Oct;76(2):465-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Aug;81(4):1115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Aug;81(4):1123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Dec;91(4):1512-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Dec;97(4):1588-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):1238-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):540-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):654-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):662-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Apr 13;316(5822):212-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans A Math Phys Eng Sci. 2007 Jul 15;365(1856):1677-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(2):244-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Nov;52(3):405-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17892448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Feb;31(2):258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jan 17;451(7176):277-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18202642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Jan;10(1):8-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 25;266(15):9447-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1903385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1993 Mar;189(3):420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Nov;182(4):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1987 Sep;172(1):106-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1986 Dec;169(4):481-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1984 Mar;160(4):305-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24258579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Oct;152(6):565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1980 Jun;149(1):78-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1991 Mar;27(3):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24414689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1988 Nov;18(3):299-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24425240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Sep;99(3-4):260-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1979 Apr 1;193(2):456-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">464606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Mar;116(3):1111-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880359</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
<name sortKey="Laisk, Agu" sort="Laisk, Agu" uniqKey="Laisk A" first="Agu" last="Laisk">Agu Laisk</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
<name sortKey="V Lbe, Mikk" sort="V Lbe, Mikk" uniqKey="V Lbe M" first="Mikk" last="V Lbe">Mikk V Lbe</name>
</noCountry>
<country name="Estonie">
<noRegion>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003644 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003644 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19587097
   |texte=   Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19587097" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020